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Abstract This paper deals with the modeling of power flow in a transmission grid within the
multi-sectoral multi-energy long-term regional energy model ETEM-SG. This extension of
the model allows a better representation of demand response for flexible loads triggered by
nodal marginal cost pricing. To keep the global model in the realm of linear programming one
uses a linearized DC power flow model that represents the transmission grid with the main
constraints on the power flowing through the different arcs of the electricity transmission
network. Robust optimization is used to take into account the uncertainty on the capacity
limits resulting from inter-regional transit. A numerical illustration is carried out for a data
set corresponding roughly to the Leman Arc region.

Keywords OR in energy · Long-term energy model · Power flow · Robust nodal electricity
prices · Robust optimization

1 Introduction

The transition to sustainable energy system in Europe as in the rest of OECD countries
involves an increase of distributed power generation from variable renewable sources such
as wind turbines and solar panels, the development of electric mobility, the linking of
power and heat or cooling generation and the active use of demand response. ETEM-SG
(Energy/Technology/Environment/Model with Smart-Grids) that we use on this research is
a model developed recently (Babonneau et al. 2012; ORDECSYS 2014) to assess the future
role of renewable and smart-grid technologies in the energy transition at a regional level. It
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belongs to the TIMES family of models (Loulou and Labriet 2008), which represents the
optimal capacity expansion in production technology and the flow of resources in the whole
energy system of a region, a country or a group of countries. These models are well-known
to lead to large-scale mathematical formulation and, as such, extensions to power flow and
uncertainty modeling bring numerical issues and challenges. In Babonneau et al. (2016),
ETEM-SG has been extended to model distribution network characteristics, and market
clearing processes for flexible load and distributed energy resources providing reserve and
reactive power compensation. Each distribution grid emanating from a bus was summarized
by a single line on which the distributed energy resources were connected. An alternative
current (AC) formulation was adopted to take into account reactive power compensation.
The resulting nonlinear model was solved through successive linearization in a Gauss Seidel
iterative procedure.

In this paper one presents a new extension of the multi-sectoral multi-energy long-term
regional energymodelETEM-SGpermitting a robust representation of powerflowconstraints
in the regional transmission grid. This extension is needed because, in ETEM-SG, demand
response is modeled as an optimal response of flexible loads and distributed energy resources
to time of use pricing schemes based on marginal cost. Since the loads and the generation
units are geographically distributed these prices should be represented bynodalmarginal costs
associated with a representation of the transmission grid. A linearized DC equivalent power
flow model which is justified under an assumption of low resistance and high susceptance
of the lines, an assumption often made in the modeling of power systems is now included
in ETEM-SG. It provides a representation of the transmission grid with the main constraints
on the power flowing through the different arcs of the electricity transmission network.
The scenarios obtained through running ETEM-SG will thus propose for each timeslice an
optimal dispatch of production units of the regional energy system with demand response
activities triggered bymarginal cost pricing and at a larger time scale the optimal location and
timing of new capacities introduction for power generation (in particular the technologies
based on renewable sources), the development of distributed storage [e.g., through electric
vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs)] and the investment in network
reinforcement. Because we aim to focus on the impact of introducing robust nodal pricing
in a regional energy model, we have simplified the description of the distribution constraints
and options, eliminating in particular reactive power compensation considerations. This has
the merit to keep the whole model within the linear programming realm.

Because the power flows circulating in a regional transmission grid depend on what
happens on the transmission grid for a much larger perimeter, a robust optimization (RO)
technique (Babonneau et al. 2010; Ben-Tal et al. 2009) is introduced to take into account the
resulting uncertainty on the capacity limits for the different arcs of the regional transmission
grid. RO is an alternative to classical approaches (e.g., Stochastic Programming, Chance
Constraint Programming) that aims at overcoming numerical issues induced by calculus
of probability and by the well-known curse of dimensionality. The main idea of RO is to
start with a non-probabilistic formulation of uncertainty, namely the uncertainty set, and
look for solutions that remain satisfactory for all possible realizations in the uncertainty set.
Solutions having this property are named robust. As no probability model is assigned to
the uncertainty computing robust solution becomes a numerically tractable operation. The
paradigm of robust linear optimization goes back to Soyster (1973) and it has been revived in
the nineties byEl-Ghaoui andLebret (1997) and byBen-Tal andNemirovski (1998). Recently
it has been applied to long-term energymodels to copewith different sources of uncertainties.
In Babonneau et al. (2010), the authors combined RO with Stochastic Programming in a
power supplymodel under pollution constraints with uncertainties on demands and pollutants
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Fig. 1 Reference energy system

diffusion coefficients. Energy security of EU is analysed in Babonneau et al. (2012) using
the long-term TIAM-WORLD model in which energy supply routes are subject to random
events. In Andrey et al. (2015), RO is also applied to deal with uncertainty related to the
impacts of climate change on the evolution of regional energy systems.

The paper is organized as follows. In Sect. 2 one gives a brief presentation of the multi-
sectoral multi-energy long-term investment planning tool ETEM-SG. In Sect. 3 one describes
the linearized DC power flow model to be introduced in ETEM-SG and one addresses the
implementation issues. Section 4 is devoted to the robust optimization approach to deal with
uncertain power flow transits. In Sect. 5 a numerical illustration is provided and finally in
Sect. 6 we concludes.

2 ETEM-SG in short

A complete description of the ETEM-SG model is provided in Babonneau et al. (2017).
ETEM-SG is a linear programming model, related to the TIMES family of models (Berger
et al. 1992; Fragnière and Haurie 1996; Loulou and Labriet 2008), which represents the
optimal capacity expansion in production technology and the flow of resources in the whole
energy system. ETEM-SG is amulti-sectoralmulti-energy technology richmodel (See Fig. 1)
specifically designed to analyze energy transition at regional level.

In its standard version the model is driven by exogenously defined useful energy demands
that is the demand for energy services and imported energy prices. All technologies are
defined as resource transformers and are characterized by technical coefficients describing
input and output, efficiency, capacity bounds, date of availability (for new technologies), life
duration, etc. Economic parameters define investment, operation and maintenance costs for
each technology. The planning horizon is generally long enough to offer a possibility for the
energy system to have a complete investment technology mix turnover.

Typically ETEM simulates the development of an efficient regional energy system with
a planning horizon of 30–50years usually divided in periods t ∈ T of 1–5years (5years in
the simulations). In each period one considers a few typical days (e.g., 6days corresponding
to the three seasons—Winter, Summer, Spring-Fall—and a user-defined day structure using
timeslices such as, for example, a peak and a non-peak part of a day—). Each of these days
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is subdivided into groups of hours to obtain finally a set of timeslices s ∈ S that will be
used to represent load curves, distribution of demand and resource availability in different
seasons and at different time of the day. This time structure is particularly important to
represent correctly demands dynamics and the way one can exploit their flexibility. This
mechanism is known as demand-response. The definition of timeslices in ETEM-SG should
allow a representation through state equations of the dynamics of the energy services required
during a day, e.g., maintaining a comfort zone in residential heat and recharging EVs and
PHEVs.

3 Modeling optimal power flows in ETEM-SG

In this section one shows how to integrate a linearized DC power flow sub-model within
the whole energy model ETEM-SG. For a detailed description of power flow modeling the
reader is referred to Bacher (1992).

3.1 Linearized load flow model

Consider a transmission network with N nodes (or buses) linked by L lines described by the
following variables and parameters:

yn : net power injection at node n = 1, . . . , N ; y is the N vector with elements yn .
z�: flow along line � = 1, . . . , L; z is the L vector with elements z�.
Ā: network incidence matrix L × N , with a�,n = 1 if line � originates from n, a�,n = −1

if line � terminates on n, a�,n = 0 otherwise. Note that the sum of the columns of A is
always equal to the the null column.

A: an L × (N − 1) matrix obtained by removing a column corresponding to the swing bus.1

in the matrix Ā.
S: an L × L diagonal matrix, S = diag(S1, . . . , SL), where Sl is the susceptances.2 vector

of line l.

The linearized Power Flow equation can be written as

z = SAθ (1)

where θ is the (N − 1)-vector of angles at the different nodes (buses). Since y = AT z, and
by introducing AT SA, one gets:

z = SA(AT SA)−1y (2)

which can be rewritten

z = �y (3)

where � is now called the injection shift factor matrix.

1 Usually the swing bus is numbered 1 for the load flow studies. This bus sets the angular reference for all
the other buses. Since it is the angle difference between two voltage sources that dictates the real and reactive
power flow between them, the particular angle of the swing bus is not important.
2 In electrical engineering, susceptance (B) is the imaginary part of admittance. The inverse of admittance is
impedance and the real part of admittance is conductance. In SI units, susceptance is measured in siemens.
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3.2 The optimal dispatch problem and its dual solution

Assume that an accurate description of the transmission grid is obtained by using a linearized
DC load flow model and neglecting losses on the lines. The nodal prices can be obtained
from the dual solution of an optimal dispatch problem under constraints of capacity of the
generators and transmission network as shown by Ruiz et al. (2011, 2012a, b) or Stiel (2011).

The distribution of power in the different lines of the transmission network is given by
Eq. (2) which we rewrite as follows

Pf = �(PGen − PLoad) (4)

where Pf = z is the vector of powerflowson each line of the network and PGen−PLoad = y is
the vector of net power injection (generation power PGen minus load PLoad ) at each bus (node)
of the network. The transmission sensitivity matrix � = SA(AT SA)−1, also known as the
injection shift factormatrix, gives the variations inflowsdue to changes in the nodal injections.
The shift factor matrix is a function of the characteristics of the transmission elements and
of the state of the transmission switches. For a given point in time, the system operator
dispatches the committed units so as to minimize the total costs of operations. Assume that
the generation costs are piecewise linear and denote the vector of nodal generation annualized
costs3 by cGen .

The economic dispatch is formulated as the following linear program:

min
PGen

cTGen PGen (5)

under the following set of constraints (with the associated dual variables indicated in the
RHS):

1TN (PGen − PLoad) = 0 (λ) (6)

Pf min ≤ � (PGen − PLoad)− ≤ Pf max (μmin, μmax) (7)

Plo
Gen ≤ PGen ≤ Pup

Gen (γmin, γmax) (8)

where 1N stands for an N vector whose components are all equal to 1. The constraint
(6) ensures the total load-generation balance, (7) enforces the flow limits on transmission
elements and flowgates where lower limits usually represent the limit in the opposite flow
direction, and (8) models the lower and upper generation limits. In Ruiz et al. (2011) it is
shown that the nodal marginal prices is then given by

π = −(λ 1 + �T (μmax − μmin)). (9)

One must now integrate this optimal dispatch model in a multi-energy long term LP model
like ETEM-SG (Babonneau et al. 2012). The implicit nodal prices given by expressions
similar to (9) in this larger model will then serve to guide demand response, e.g., in charging
of EVs or PHEVs and the use of these technologies for distributed storage.

3.3 Introduction of a transmission grid sub-model in ETEM-SG

The optimal dispatch equations (with a proper representation of the power transmission grid)
are introduced in the ETEM-SG equations at the finest level of time scale and geographical
information.

3 Expressed in $/MWh or CHF/MWh.
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Time scale representation: The dispatch problem is to be solved explicitly in ETEM-SG for
every timeslice s ∈ S and all periods t ∈ T under regular and peak load conditions. Power
flows on the transmission grid are thus computed for all timeslices.

Geographical decomposition: Because the transmission grid defines some important con-
straints in the dispatch problem, it is necessary to decompose the regional energy system
represented in ETEM-SG in subregions n ∈ N , each one corresponding to a node of the
transmission grid. Useful demands are defined for each subregion separately and ETEM-SG
will thus determine a complete energy sub-system at each node of the grid, describing in par-
ticular, electricity production units and technologies generating an electricity demand. Then
electricity generation (injections) and loads are computed at each node for each timeslice
and used to determine the resulting power flow.

Power flow equations in ETEM-SG: The new equations introduced in ETEM-SG and the link
with existing variables and constraints are described here: Let N be the set of subregions
represented in ETEM-SG and L̄ the number of pairs of subregions that are connected and that
may directly exchange electricity. Note that L̄ ≤ L , L being the number of transmission lines,
as two connected subregions can be linked by multiple line transmissions. In the standard
ETEM-SG formulation, there is a variable, denoted Exchange[t, s, n1, n2], that represents
the electricity energy exchanged between subregions n1 ∈ N and n2 ∈ N in period t and
timeslice s. A positive number means electricity goes from n1 to n2 while a negative one
means the opposite.

The following new equation constraints link power flow variables with the electricity
exchanges:

Exchange[t, s, n1, n2] = αs
∑

l∈Ln1,n2

zt,sl , ∀ t ∈ T, ∀ s ∈ S, ∀ n1 ∈ N , ∀ n2 ∈ N

(10)

where Ln1,n2 ⊂ L is the subset of arcs between n1 and n2, z
t,s
l is the power flowing from

n1 to n2 (or from n2 to n1 if negative) at period t and timeslice s and αs is a coefficient to
convert energy to power.

Each power flow is constrained by line capacities c

− ctl ≤ zt,sl ≤ ctl , ∀ t ∈ T, ∀ s ∈ S, ∀ l ∈ L . (11)

Finally power flows are defined from Eq. (1):

zt,sl = (θ t,sn1 − θ t,sn2 )sl , ∀ t ∈ T, ∀ s ∈ S, ∀ l ∈ L (12)

where θ are variables representing bus angles at transmission nodes and sl is the susceptance
factor of line l.

4 Robust optimization to deal with uncertain power flow transits

The power flowing through a regional transmission grid depends on regional activity but
also on what happens on the transmission grid on a much larger perimeter due to power
flow transits. When dealing with long-term analysis, these activities are uncertain but have
an impact on regional network congestion. An approach for simulating these power flow
transits would consist in using flow estimates from a model representing the aforementioned
larger perimeter. Without a proper access to this information, it is proposed here the use a
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robust optimization approach to take into account the resulting uncertainty on the capacity
limits for the different arcs of the regional transmission grid.

In so doing, the randomness of the situation is formulated broadly. In other words, one
does not model uncertain capacity on each transmission line separately but, instead, the entire
set of lines is considered simultaneously when assessing the risk. This is justified by the fact
that the modeler is not interested in knowing exactly what happens on each individual line
but, rather, in defining power flows that may satisfy regional loads and injections at nodes at
all timeslices and for all possible conditions of lines saturation.

One therefore creates aggregate capacity constraints by summing at each timeslice s ∈ S
and period t ∈ T the |L| constraints (11) to obtain:

−
∑

l∈L
β t
l c

t
l ≤

∑

l∈L
zt,sl ≤

∑

l∈L
β t
l c

t
l , ∀ t ∈ T, ∀ s ∈ S (13)

where β t
l are random factor with values in [0, 1]. For the sake of simpler notations the time

indices s and t are omitted in the following equations.

4.1 Uncertainty model

Define the random coefficients βl as follows

βl = β̄l − β̂lξl (14)

where β̄l represents the nominal congestion rate of transmission line l resulting from power
transits, β̂l the congestion variability and ξ is a set of independent random variables with
support [−1, 1]. Using this definition, the capacity of line l available locally takes values in
[cl(β̄l − β̂l); cl(β̄l + β̂l)]. Equation (13) becomes:

−
∑

l∈L
(β̄l − β̂lξl)cl ≤

∑

l∈L
zl ≤

∑

l∈L
(β̄l − β̂lξl)cl (15)

which can be written differently as:
∑

l∈L
(β̄l cl + zl) −

∑

l∈L
β̂lξl cl ≥ 0 (16a)

∑

l∈L
(β̄l cl − zl) −

∑

l∈L
β̂lξl cl ≥ 0 (16b)

where the first summations of two constraints are linear deterministic expressions whereas
the second summations represent random terms.

4.2 Robust optimization for ETEM-SG

One applies Robust Optimization method (Ben-Tal et al. 2009) to (16a) and (16b). Although
constraints are immunized separately in the Robust Optimization paradigm, it has been
showed in Babonneau et al. (2010, 2013) that two-sided inequality constraints such as (16a)
and (16b) can be treated simultaneously.

One considers an uncertainty set defined as follows

� =
{

ξ ∈ R | −1 ≤ ξl ≤ 1 and
∑

l∈L
ξl ≤ k

}
(17)
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in which k represents the immunization factor. Using robust optimization techniques, the
worst case situation for network saturation is given by the robust equivalent of the robust
constraints (16a) and (16b)

∑

l∈L
(β̄l cl + zl) − k||β̂l cl − w||∞ − ||w||1 ≥ 0 (18a)

∑

l∈L
(β̄l cl − zl) − k||β̂l cl − w||∞ − ||w||1 ≥ 0 (18b)

which is equivalent to the system of linear inequalities
∑

l∈L
(β̄l cl + zl) −

∑

l∈L
ul − kv ≥ 0 (19a)

∑

l∈L
(β̄l cl − zl) −

∑

l∈L
ul − kv ≥ 0 (19b)

ul + v ≥ β̂l cl , ∀ l ∈ L (19c)

with additional variables u, v and w.
From (Ben-Tal et al. 2009), one canderive a satisfaction probability for capacity constraints

for any realization of ξ ∈ � that depends on the radius k of the uncertainty set. This result
is given in Proposition 1. The factor k plays a crucial role as the larger its value, the greater
the number of realizations ξ that are considered.

Proposition 1 Let ξi , i = 1, . . . , n be independent random variables with values in interval
[−1, 1] and with expected value zero: E(ξi ) = 0. Then, for all k ≥ 0

Prob
{
ξ ∈ � | ∑

l∈L β̂lξl cl > k||β̂l cl − w||∞
}

≤ exp(− k2
2.5|L| ). (20)

In the numerical experiment presented in Sect. 5, one considers a transmission network with
12 lines (i.e., |L| = 12) and one sets k = 10. This leads to a 96% constraint satisfaction
probability.

5 Numerical illustration

In this section one provides an illustration of the model using a case study, which corresponds
broadly to the regional energy system of the “Léman Arc” area in Switzerland (Cantons of
Vaud and of Geneva). Note that the objective of this numerical simulation is to illustrate the
impact of introducing a representation of power flow constraints and robustness in a regional
energy model, and not to provide a precise representation of the energy policy choices in this
region.

The energymodel is adapted fromanETEM-SGmodel that hadbeendeveloped in previous
projects4 in which three subregions were represented. This spatial decomposition corre-
sponds, globally, to the three power distribution companies operating in the region (i.e., SIG
for Geneva, SIL for Lausanne and Romande Energie (ROM) for the rest of the region) but it
does not match any grid transmission aspect. One explains below how the regional energy
system has been reorganized into 9 subsystems connected through power transmission lines.
The ETEM-SG simulations are performed for a 2015–2050 horizon planning with 5-year
periods decomposition.

4 The reader is referred to the RITES (ORDECSYS 2013) and TOU (ORDECSYS 2014) projects, which
were supported by the Swiss Federal Office of Energy.
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Fig. 2 Swiss transmission grid in 2015 (Figure from Weigt and Schlecht 2014)

5.1 Data

Energy system of Lac Léman area: In 2010, the total annual energy consumption of the
“Léman Arc” region was 114.3 PJ and, overall, CO2-eq emissions amounted to 5.48Mt. The
region is a net importer of electricity, around 5.5 TWh out of a total electricity consumption
of 7.1 TWh in year 2010.5

Transmission grid: Figure 2 shows the Swiss transmission grid as reported in Weigt and
Schlecht (2014). The network used in the ETEM-SG model will be a subgraph of this net-
work, i.e., the one corresponding to the bottom-left corner. From the description of the
Swiss transmission grid one can extract the sub-grid involved in the “Léman Arc” area. It is
schematically represented in the Figures of resuls 7 and 8 with 9 nodes each one connected
to a local energy subsystem and 12 transmission lines. Among the 9 nodes, three (Verboix,
Romanel and Triphon) are connected to the Swiss and European transmission grid for elec-
tricity import/export and transit. Line capacities and reactances are set to values used inWeigt
and Schlecht (2014).

Useful demands: Table 1 gives the regional useful demands considered in the case study
and Fig. 3 displays their assumed evolution up to 2050. For the present exercise, demands
are distributed geographically among the 9 subsystems connected to the transmission grid.
The allocation of demand to nodes is obtained by first satisfying the observed demands for
the three power distribution companies in the three main areas (Geneva, Lausanne and the
rest of the region) and then by distributing uniformly the demand to the buses located in the
considered areas (2 buses for Geneva, 2 buses for Lausanne and 5 buses for the rest of the
region).

Finally demands are distributed on a yearly basis, among the 12 timeslices defined, for
three seasons (Winter, Summer, Intermediate), and four parts of Day (Night, morning peak
P1, Mid-Day and evening peak P2), as illustrated in Fig. 4.

5 For more details on the global energy system, the reader is referred to ORDECSYS (2013, 2014).
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Table 1 Useful demands classification (PJ means PetaJoules and tkmv/d means thousands kms vehicle per
day)

Sector Label Code Unit

Residential Heat existing buildings 2–9 appts RA PJ

Heat existing houses RB PJ

Heat new buildings 2–9 appts RC PJ

Heat new houses RD PJ

Appliances R1 PJ

Lighting RL PJ

Transport Public transports: bus TA tkmv/d

Public transports: tramway TB tkmv/d

Public transports: train TC tkmv/d

Public transports misc. TD tkmv/d

Automobile TE tkmv/d

Truck TH tkmv/d

Delivery vehicles TL tkmv/d

Industry Food, textile, wood, paper, edition RNH PJ

Chemistry, rubber, glass, metal RCI PJ

Machine manufacturing, equipments RMA PJ

Construction RCO PJ

Tertiary RTR PJ

Other RAL PJ

Fig. 3 Evolution of useful demands in PJ (left) and in tkmv/d (right)

Technology portfolio The set of technologies competing for energy conversion and useful
demands is described and used in Babonneau et al. (2016, 2017) and ORDECSYS (2013,
2014). Table 2 summarized the available technologies for the key sectors. The present version
includes more than 100 technologies.

5.2 Scenario definition

The Swiss energy strategy scenario:TheSwiss FederalOffice of Energy (SFOE) has proposed
a scenario for energy transition, called Neue Energiepolitik (NEP). It describes the Swiss
Energy Strategy at horizon 2050 (‘mittleres’ Szenario A-00-2010), We use similar boundary
assumptions to those in NEP for the three scenarios developed with ETEM-SG for “Léman

123



www.manaraa.com

Ann Oper Res (2019) 274:101–117 111

Hour January February March April May June July August September October November December
23
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

IN WN

WP1 IP1 SP1 IP1 WP1

WN IN SN

WM

WP2 IP2 SP2 IP2 WP2

WM IM SM IM

Fig. 4 Definition of timeslices

Table 2 Example of available technologies

Sector Technology

Electricity generation Hydro power plant, windmill, PV, gas turbine, cogeneration (heat and
electricity), geothermal plant, gas combined power plant, oil-fired
steam-cycle, gas CC, gas fuel cell, biomasse plant, etc.

Private transport EV, PHEV, hybrid, gasoline, diesel, hydrogen, methanol, compressed
natural gas, etc.

Residential heating Electric heat pump, heat plant, district heating, oil furnace, gas furnace,
Biogas furnace, wood stove, electric baseboard heater, insulation, etc.

Arc” area. These scenarios will illustrate the importance of taking into consideration power
flow constraints at a regional scale. In particular, in the NEP scenario, the emissions of
greenhouse gases are caped at a level of 1.5 tons of CO2-eq per person in 2050. Since
the population is expected to attain 1.37 M people in the Arc Lémanique region by 2050
(‘mittleres’ Szenario A-00-2010), we impose as a constraint that the total 2050 emissions
should not exceed 2.1 Mt CO2-eq in the region.
Simulating network congestion: In order to evaluate the impact of power flow constraints and
in particular of network congestion on simulation results, three different network settings are
compared.

• In the first scenario, it is assumed that the full existing line capacities (i.e., 490MW) is
available for transmission in the region.Without considering inter-regional power transit,
the proposed network is oversized and thus congestion does not occur.

• In the second scenario, one assumes that 90% of line capacities is used by power flow
transits related to the rest of Swiss and European transmission grid. The residual capac-
ities dedicated for regional activities is decreased by a factor 10 (i.e., 49MW). The
deterministic version of ETEM-SG is solved with these reduced line capacities.

• In the third scenario, one take into account power flow transits using robust optimization
techniques as described in Sect. 4. One assumes a nominal saturation rate β̄l = 0.5 and
variability β̂l = 0.5. This corresponds to a nominal capacity c̄l = 0.5cl . Here the problem
dimension increases in a controlled way as reported in Table 3. As a result, the impact
on computational times is limited to 5% increase.
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Table 3 Problem dimensions for deterministic and robust formulations

Version Scenario # Constraints # Variables

Deterministic Scenarios 1 and 2 2’390k 330k

Robust Scenario 3 2’440k 376k

Increase 2% 1.4%

Fig. 5 Energy mix (in PJ/year)

5.3 Simulation results

The results of the simulations, performed for a 2015–2050 horizon planning, are detailed
below. The global evolutions of the energy system that is common to the three scenarios is
first presented. Then the nodal power balance and prices are compared for the three scenarios
in period 2050.

5.3.1 Global energy system evolution

In the electricity sector, Fig. 6 shows that wind mills technology is the main carbon free
option to satisfy electricity consumption increase as well as environmental constraints.

At global level, it can be observed that all scenarios lead to very similar situations. It seems
that power flow constraints don’t affect investments globally but have instead a significant
impact at the nodal spatial scale, as shown in the next subsections. This result is corroborated
by the cost of robustness which is very low. The impact of robust optimization on the systemic
cost (investment and operations) is limited to 0.5% compared to the cost associated to the
deterministic problem in scenario 1. Indeed investments are very similar among the three
scenarios but their localization which does not affect the cost.

Figures 5 and 6 display the evolutions, observed for all three scenarios, of regional energy
mix and electricity production, respectively. On Fig. 5, one notices an increase of electricity
consumption, a reduction of gas use and a gasoline removal. Indeed, to meet the emissions
constraint the model replaces gas heaters by heat pumps in residential and building sectors
and invest in hybrid and electric vehicles.
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Fig. 6 Electricity production mix (in PJ/year)

5.3.2 Impact of transmission constraints on the 2050 electricity sector

In this subsection one details the simulation results at each node and in particular one observes
the impact of power transmission constraints on nodal electricity balance and nodal pricing.
Nodal electricity balance in 2050: Figure 7 shows (in PetaJoules) for the three scenarios (1)
total electricity production and consumption at nodes, (2) annual electricity exchanges for
local consumption on transmission lines and (3) total 2050 electricity imports at the three
import nodes.

It can be observed that power flow constraints can have a significant impact on nodal
electricity consumption and production patterns. For example, one observes for Verboix a
change from 2.10 PJ in Scenario 1 to 6.12 PJ in Scenario 3 for electricity generation and from
5.86 to 10.35PJ for total electricity consumption.These different production and consumption
patterns are explained by different technological choices at nodes. As expected power flow
constraints affect strategic and operational decisions on the full energy system and not only
on the electricity sector.

However, in practice the transmission grid is not fixed over time and new investments are
usually performed to follow consumption and production evolution. Modeling of investment
options on transmission lines would make it possible to increase line capacities and, as a
consequence, would limit the changes in power consumption and production patterns.
Nodal electricity prices and congestion in 2050: Figure 8 summarises nodal electricity prices
computed by ETEM-SG in 2050 in the three scenarios. It gives the minimum and maximum
computed prices over the different timeslices. Figure 8 also displays the maximum utilisation
rates of transmission lines over the different timeslices. In scenario 2, utilisation rates include
inter-regional transits while in the robust scenario figures correspond to nominal utilisation
rates without inter-regional transits.

First and as expected, in the first scenario with large transmission line capacities and with-
out consideration of inter-regional power transit through the transmission grid, the network is
oversized and nodal electricity prices are not affected by network congestion. In other words
electricity prices are identical at all nodes and vary only in time. In the congested scenarios
(scenarios 2 and 3), ETEM-SG generates very different nodal electricity prices. The highest
prices are usually computed for central nodes that have no direct connection to imports.

Surprisingly, the minimum electricity price in Verbois, that is connected to imports, is
higher in the congested scenarios and higher than the import price. Indeed, this is the impact
of power flow constraints. A marginal change in consumption in Verbois would modify the
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Fig. 7 Nodal electricity balance in 2050

entire system and thus yields to an additional cost difficult to anticipate without a model like
ETEM-SG.
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Fig. 8 Statistics on nodal electricity prices (in MCHF/PJ) and on line utilization rate (in %) in 2050

Figure 8 also demonstrates a positive impact of robustness on nodal prices with maximum
electricity prices in scenario 3 that are always lower than the ones computed in the two other
scenarios. These results can be explained by the fact that robust optimization is a minmax
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approach and thus provides solutions that are robust for worst case situations, i.e., congested
network situations. Note that in this first tentative of applying robust optimization in that
context, it was not assumed any known information on inter-regional power flow transit.
With such information, one could deliver even more realistic and robust energy analysis.

6 Conclusion

In this paper, the multi-sectoral multi-energy long-term investment planning tool ETEM-SG
has been extended to the consideration of power flow constraints in regional transmission
grid by implementing a linearized DC power flowmodel that represents the transmission grid
with the main constraints on the power flowing through the different arcs of the electricity
transmission network. Then as power flows circulating in a regional transmission grid depend
partly on what happens on the transmission grid for a much larger perimeter which is difficult
to quantify precisely, robust optimization technique is used to take into account the uncertainty
on the capacity limits resulting from inter-regional transit.

The paper shows on a simple case study, that corresponds roughly to the “Léman Arc”
region, the relevance of such amodeling exercise for long-term simulations of regional energy
systems. First one can notice that power flow constraints together with line capacities have
a significant impact on nodal electricity consumption and production patterns and thus on
technological choices. Then one can observe a significant effect on maximum nodal prices
when considering transit uncertainty using robust optimization.

Future work is envisioned to allow the model ETEM-SG to provide more realistic energy
analysis to support decision making. First one should couple the regional ETEM-SG model
with a national one (e.g., Weigt and Schlecht 2014) in order to calibrate inter-regional power
flow transit properly on simulation results performed with this much larger model. This
coupling exercise is not straightforward as it requires an harmonisation of both models in
term of assumptions and technological evolutions. For example, regional and national models
must provide compatible results in term of electric vehicle penetration as it has a significant
impact on electricity grids. A secondworkwill consist in extending the new transmission grid
module in ETEM-SG to network improvement decisions. This way ETEM-SG will then be
able to make investment trade-off between grid capacity expansions and localized generation
technologies.
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